\(\int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [427]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 54 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {3 \text {arctanh}(\cos (c+d x))}{2 a^2 d}+\frac {2 \cot (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d} \]

[Out]

-3/2*arctanh(cos(d*x+c))/a^2/d+2*cot(d*x+c)/a^2/d-1/2*cot(d*x+c)*csc(d*x+c)/a^2/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2948, 2836, 3855, 3852, 8, 3853} \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {3 \text {arctanh}(\cos (c+d x))}{2 a^2 d}+\frac {2 \cot (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d} \]

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

(-3*ArcTanh[Cos[c + d*x]])/(2*a^2*d) + (2*Cot[c + d*x])/(a^2*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a^2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 2948

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[a^(2*m), Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f,
 n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc ^3(c+d x) (a-a \sin (c+d x))^2 \, dx}{a^4} \\ & = \frac {\int \left (a^2 \csc (c+d x)-2 a^2 \csc ^2(c+d x)+a^2 \csc ^3(c+d x)\right ) \, dx}{a^4} \\ & = \frac {\int \csc (c+d x) \, dx}{a^2}+\frac {\int \csc ^3(c+d x) \, dx}{a^2}-\frac {2 \int \csc ^2(c+d x) \, dx}{a^2} \\ & = -\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac {\int \csc (c+d x) \, dx}{2 a^2}+\frac {2 \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{a^2 d} \\ & = -\frac {3 \text {arctanh}(\cos (c+d x))}{2 a^2 d}+\frac {2 \cot (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.47 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.59 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\left (\cot (c+d x) (-4+\csc (c+d x))+3 \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4}{2 a^2 d (1+\sin (c+d x))^2} \]

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

-1/2*((Cot[c + d*x]*(-4 + Csc[c + d*x]) + 3*(Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]]))*(Cos[(c + d*x)/2]
 + Sin[(c + d*x)/2])^4)/(a^2*d*(1 + Sin[c + d*x])^2)

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.26

method result size
parallelrisch \(\frac {\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{2}}\) \(68\)
derivativedivides \(\frac {\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{4 d \,a^{2}}\) \(72\)
default \(\frac {\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{4 d \,a^{2}}\) \(72\)
risch \(\frac {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}+4 i {\mathrm e}^{2 i \left (d x +c \right )}-4 i}{a^{2} d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d \,a^{2}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d \,a^{2}}\) \(95\)
norman \(\frac {\frac {5 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {5 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {10 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {1}{8 a d}+\frac {5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}-\frac {5 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}+\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {37 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}+\frac {43 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(222\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/8*(tan(1/2*d*x+1/2*c)^2-cot(1/2*d*x+1/2*c)^2-8*tan(1/2*d*x+1/2*c)+8*cot(1/2*d*x+1/2*c)+12*ln(tan(1/2*d*x+1/2
*c)))/d/a^2

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.72 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 8 \, \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/4*(3*(cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2) - 3*(cos(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2)
 + 8*cos(d*x + c)*sin(d*x + c) - 2*cos(d*x + c))/(a^2*d*cos(d*x + c)^2 - a^2*d)

Sympy [F]

\[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\int \frac {\cos ^{4}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}}{\sin ^{2}{\left (c + d x \right )} + 2 \sin {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**3/(a+a*sin(d*x+c))**2,x)

[Out]

Integral(cos(c + d*x)**4*csc(c + d*x)**3/(sin(c + d*x)**2 + 2*sin(c + d*x) + 1), x)/a**2

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 115 vs. \(2 (50) = 100\).

Time = 0.23 (sec) , antiderivative size = 115, normalized size of antiderivative = 2.13 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {\frac {8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}}{a^{2}} - \frac {12 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} - \frac {{\left (\frac {8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{2}}{a^{2} \sin \left (d x + c\right )^{2}}}{8 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/8*((8*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/a^2 - 12*log(sin(d*x + c)/(cos
(d*x + c) + 1))/a^2 - (8*sin(d*x + c)/(cos(d*x + c) + 1) - 1)*(cos(d*x + c) + 1)^2/(a^2*sin(d*x + c)^2))/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.81 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {12 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{2}} + \frac {a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{4}} - \frac {18 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 8 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1}{a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}}{8 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/8*(12*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 + (a^2*tan(1/2*d*x + 1/2*c)^2 - 8*a^2*tan(1/2*d*x + 1/2*c))/a^4 - (
18*tan(1/2*d*x + 1/2*c)^2 - 8*tan(1/2*d*x + 1/2*c) + 1)/(a^2*tan(1/2*d*x + 1/2*c)^2))/d

Mupad [B] (verification not implemented)

Time = 9.84 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.56 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^2\,d}+\frac {3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,a^2\,d}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^2\,d}+\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{8}\right )}{a^2\,d} \]

[In]

int(cos(c + d*x)^4/(sin(c + d*x)^3*(a + a*sin(c + d*x))^2),x)

[Out]

tan(c/2 + (d*x)/2)^2/(8*a^2*d) + (3*log(tan(c/2 + (d*x)/2)))/(2*a^2*d) - tan(c/2 + (d*x)/2)/(a^2*d) + (cot(c/2
 + (d*x)/2)^2*(tan(c/2 + (d*x)/2) - 1/8))/(a^2*d)